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Introduction

The construction of the reduced space for a symplectic manifold with symme-
try, as formalized by Marsden and Weinstein [13], has proved to be very useful
in many areas of mathematics ranging from classical mechanics to algebraic
geometry. In the ideal situation, which requires the value of the moment map
to be weakly regular, the reduced space is again a symplectic manifold. A lot
of work has been done in the last ten years in the hope of finding a ‘correct’
reduction procedure in the case of singular values. For example, Arms, Gotay
and Jennings describe several approaches to reduction in [4]. At some point
it has also been observed by workers in the field that in all examples the
level set of a moment map modulo the appropriate group action is a union of
symplectic manifolds. Recently Otto has proved that something similar does
indeed hold, namely that such a quotient is a union of symplectic orbifolds
[16]. Independently two of us, R. Sjamaar and E. Lerman, have proved a
stronger result [21]. We proved that in the case of proper actions the re-
duced space, which we simply took to be the level set modulo the action, is a
stratified symplectic space. Thereby we obtained a global description of the
possible dynamics, a procedure for lifting the dynamics to the original space
and a local characterization of the singularities of the reduced space. (The
precise definitions will be given below.) The goal of this paper is twofold.
First of all, we would like to present a number of examples that illustrate
the general theory. Secondly, in computing the examples we have noticed
that many familiar methods for computing reduced spaces work nicely in the
singular situations. For instance, in the case of a lifted action on a cotangent
bundle the reduced space at the zero level is the ‘cotangent bundle’ of the
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orbit space. And in some cases the reduced space can be identified with the
closure of a coadjoint orbit,.

1 A Simple Example

Consider the standard action of the circle group SO(2) on R?, and lift this
action to T"R* ~ R? x R2. In coordinates,

q’ cos¢ —sind

1 . 0 7
q = sinf  cosd q?
™ O cosf@ —sind |’
P2 sinf  cosé P2

and the canonical symplectic form is w = dg* A dp; + dg? A dps. The corre-
sponding momentum map J is the angular momentum J(q,p) = ¢'p: — ¢*p1.
Zero is a singular value of J. Let us compute the reduced space at zero
(T*R?)g, which we will take to be the quotient J=1(0)/SO(2). The zero Ievei
set J~1(0) is a union of a point, 0, and of a hypersurface

Z={¢'p,—¢’p1=0:(¢",¢*,p1,ps) £ 0}.

The hypersurface is a SO(2)-invariant coisotropic submanifold of T*R2. The
group SO(2) acts freely on Z and the null directions of the restriction of
the symplectic form w to Z are precisely the orbital directions (just as in
the regular case). Consequently the quotient (0 = Z[50(2) is a symplectic
manifold. The other piece of the zero level set, the origin 0, is fixed by the
action of SO(2) and we may consider the quotient ¢y = {0}/50(2) as a
zero-dimensional symplectic manifold. Thus the reduced space (I"R?*); is a
disjoint union of two symplectic manifolds,

(T*Rz)o e 00 I_ICI (1)
Let‘us give a more concrete description of the reduced space. We claim that
C1 is R*\{0} with the standard symplectic structure and that the reduced

space as a whole is diffeomorphic to the orbifold R2 /Z3, where the action of
Z, is generated by the reflection (21, 2?) — (—at, —z?).

1.1 Digression: Smooth Structures on Reduced Spaces

Let us explain what is meant by (T*R?), being diffeomorphic to R*/Z,. In
general, let (M,w) be a Hamiltonian G-space with corresponding moment
map ® : M — g~ and let us assume that G acts properly on M. (In all the
examples that follow the group G is going to be compact and for compact
groups the properness of the action is automatic.) For us the reduced space
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at zero, My, is the topological space formed by dividing the zero level set
®~1(0) by the group action, i.e.,

My = 871(0)/G.

(We will see later that My has a lot of structure, not just a topology.) As
we have just seen, ®7!(0) need not be a manifold and the action of G on the
zero level set need not be free. Thus there is no reason for the reduced space
so defined to be a manifold (or even an orbifold). However, as Arms et al.
have observed [3], it makes sense to single out a certain subset of the set of
continous functions on My as follows. Call a function f: My — R smooth if
there exists a smooth G-invariant function f on M whose restriction to the
zero level set ®71(0) equals the pullback of f to ®71(0) by the orbit map
7:®71(0) — &71(0)/G = My, i.e.,

f|<1>-1(o) =7"f.
Let us denote the set of smooth functions by C*(Mp). A map F: My — N,
where N is a manifold (or an orbifold, or another reduced space), is smooth
if for any function ¢ € C*°(N) the pullback F*¢ is a smooth function on My,
po F € C®(My). It is now clear what we mean by two singular spaces being
diffeomorphic.

1.1. REMARK. If G is a discrete group acting symplectically on a manifold
(M,w), it makes sense to define the corresponding moment map to be the
zero map, since the Lie algebra of G is trivial. The reduced space is then
a symplectic orbifold M/G. (See [18] or [15] for the definition of an orb-
ifold.) For example, the action of Z; on R? described above preserves the
standard symplectic form dz' A dz? and the reduced space is the symplectic
orbifold R?/Z; with ring of smooth functions isomorphic to the collection of

the smooth even functions on R2.

1.2 The Reduced Space (T*R?), as an Orbifold

Let us now go back to our example. Consider the 2-plane
A= { (ql)q27p17p2) € T*RZ : q2 = 0, P2 = 0}

This plane is symplectic, it is completely contained in the zero level set of the
moment map J and the SO(2)-orbit of any point (¢,p) € J~*(0) intersects A
in exactly two points. Indeed, a point (g¢,p) lies in the zero level set if and
only if ¢ and p are collinear as vectors in R?. Consequently, J=*(0)/S0(2) is
homeomorphic to A/Z,.

What about the two smooth structures? Clearly any SO(2)-invariant
function on T*R? restricts to a Z,-invariant function on A. So the map
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AJZy — J7H0)/S0(2) is smooth. To show that this map is a diffeornorphism
it suffices to prove that any (smooth) Z,-invariant function on A extends to
a (smooth) SO(2)-invariant function on T*R2. By Schwarz’s theorem [20]
any smooth Zg-invariant function on A Is a smooth function of the Invariants
(¢")?, p1? and ¢'p1 (these functions are a set of generators of the Z,-invariant
polynomials on A). Now (¢')? is the restriction to A of the SO(2)-invariant
(¢')* + (¢*)%. Similarly,

I

p12 (p12 +p22)lA

¢'p = (¢'p1 + q2p2)’A )

Consequently the map J=1(0)/50(2) — AJZ, is smooth as well and, there-
fore, the two reduced spaces are diffeomorphic.

Note that the Z,-invariant functions on A form a Poisson subalgebra of
C*%(A). So the smooth functions o the reduced space (T*R?)q form a Poisson
algebra. This is an example of the fact proved by Arms et al. (loc. cit.) that
the set of smooth fun ctions on a reduced s pace My has a well-defined Poisson
bracket induced by the bracket on the original manifold A/,

The Poisson bracket of C=((T*R*)y) is compatible with the symplectic
structure of the pieces €} and Cl of the reduced space (see (1)) in the follow; ng
sense. A pair of functions fand gin C=((T*R?)o) restrict to a pair of smooth
functions on the symplectic manifold ;. The symplectic structure of Cy
defines a Poisson bracket {;-}or. It is easy to check that this new bracket
coincides with the bracket induced by the Poisson structure on C=((T*R?),)

]
e,

{f’c'uglcl }01 &= {fag}(T‘R2)0

Similarly, one can show that

¢

ifs 9}(T-R2).,ICO =0,

which is consistent with viewing C as a zero-dimensional symplectic mani-
fold. We thus see that the Poisson bracket of C((T"R?);) and the decom-

position (1) of the reduced Space into symplectic manifolds are intimately
related.

1.3 Reduction via Invariants

Let us present a different calculation of the reduced space (I*R?);. The
calculation uses invariant theory, an approach advocated by R. Cushman. We
will realize the reduced space as a subspace of R cuf out by the equations
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#? = o+ a5’
T4 = 0 (2)
1 2 0

In words, this reduced space is diffeomorphic to the top halfz Ev;th vertex
included ,of the standard cone in R3. Consider a change of variables
?

U = %(‘12 - Pl)
Uy = %(ql - Pz)
uz = %(ql + p2)
Uy = %(‘12 +p1)

and set
1 = up+iv
29 = UQ+Z"U2.

We have thus identified T*R? with C%. In these complex coordinatesf tﬁe
e _— pu— .
symplectic form is given by w = i (dz; A dz + dz2 A dZ;), the action of the

circle group SO(2) ~ U(1) by
&’ - (21,72) = (¢ 21,67 22)

i the set
and the moment map by J(z1, 22) = |22|> — |z1]%. It is easy to. s<lee' that the s
of (real) invariant polynomials is generated by four polynomials:

o = lal*+|al,
02 = 51z + Az,
o3 = i(z122 —Z122),
gy = |al’—|al.

@2 2 to an injective map
The map o = (01,03,03,04) : C* — R* pushes down j

7 : C?/S0(2) — R*. The invariants satisfy the relations

{ U% . UZ ‘7% + a'g (3)

a1 0.

(VA

i 5 the equations
Consequently the image of 7 is a subset of R* cut out by the eq

2 2
2 2"+ 23
Ty 0

v 1l

in R* as
Therefore the reduced space (T*R?)q := {0.4 =0}/50(2) ZmbedsdilIrllate b
the subset cut out by (2) as claimed. If we ignore thesfou#; coord ) e
see that the reduced space is simply a round cone in R®. Since the invarian
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o1,. . ., 04 are quadratic, their linear span in C*°(C?) forms a four-dimensional
Lie algebra under the standard Poisson bracket. Alternatively, it is enough
to note that

{oi,04} = 0 fori=1,...,4

{0’1,0'2} = 20’3
{0'1,0'3} =S ——20’2
{0'2,0'3} = 20’1.

Therefore, the correspondence

10 0 1
4 01 110
-1 0 0 —1
20 01 BTN 0

establishes an isomorphism between the Lie algebra spanned by the generators
of the invariants and gl(2,R). The image cut out by (2) is nothing more
than half of the nilpotent cone, the closure of the connected component of
the principal nilpotent orbit in gl(2,R).

More intrinsically this can be seen as follows. The moment map for the
action of Sp(T*R?,w) =~ Sp(2,R) on T*R? ~ R* identifies sp(2, R) with the
Poisson algebra of quadratic polynomials. The polynomials that commute
with o4 then get identified with u(1,1), which is isomorphic to gl(2,R). We
will come back to this point in Section 5, Remark 5.4.

2 A Summary of the General Theory

The goal of this section is to introduce the notion of a stratified symplectic
space, to explain how this notion arises naturally in reduction and to describe
some properties of reduced spaces.

2.1 Stratifications

The main idea of a stratification is that of a partition of a nice topological
space into a disjoint union of manifolds. Thus a manifold is trivially a strat-
ified space. A more interesting example of a stratified space is that of a cone
on a manifold: given a manifold M the open cone CM on M is the product
M x [0,00) modulo the relation (,0) ~ (y,0) for all 2,y € M. That is, M
is M x [0,00) with the boundary collapsed to a point, the vertex * of the
cone. The cone CM is a disjoint union of two manifolds: M x (0, 00) and the
vertex *. Similarly one can consider the cone C’(CM) on the cone CM,
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C(CM) = (EM x [0,00)) [ ~ .
The space Ca’(CO'M) is a union of three manifolds:
the vertex % of C(CM);

the open half line {*} x (0, 00) through the vertex of C'M;
the manifold (M x (0,00)) X (0, c0).

In general we will see that locally a stratified space is a cone on a cone on a
cone .... Let us now make this precise.

2.1. DEFINITION. A decomposed space is a Hausdorff paracompact topolog-
ical space X equipped with a locally finite partition X = J;cz S; into locally
closed subsets S; called pieces, each of which is a manifold.

We shall only consider decompositions each of whose pieces has the structure
of a smooth manifold. A given space may be decomposed in a number of
different ways.

2.2. EXAMPLE. Consider the subset of R?
Y={(@= ) eR*: 2 =0}U{(z,2}) e R?* : 2 > 0,2 > 0}.
The space Y can be broken up into a union of manifolds as

Y={z>=0}U{z"' >0,2> >0} U {z' =0,z > 0} (4)

or as
Y = {z'>0,22>0}U {z! =0,2% > 0} U {(0,0)} 5
U{z! < 0,22 =0} U {z* > 0,2% = 0}. (5)

2.3. EXAMPLE. A triangulated space is a decomposed space, if we declare
the strata to be the (combinatorial) interiors of the simplexes.

2.4. EXAMPLE. If X = [[;c7 S; is a decomposed space, the cone CX has a
natural decomposition

CX = {x}U]]S: % (0,00).
i€l
2.5. EXAMPLE. The product of two decomposed spaces X = [[S; and ¥ =

1 P; is a decomposed space

XxY=]]S:x P,

0J
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Define the dimension of a decomposed space X to be dim X = sup;cr dim .S;.
We shall only consider finite-dimensional spaces. A stratification is a partic-
ular kind of decomposition. Its definition is recursive on the dimension of a
decomposed space.

2.6. DEFINITION (cf. [7]). A decomposed space X = {S;};cr is called a strat-
ified space if the pieces of X, called strata, satisfy the following local condi-
tion:

Given a point z in a piece S there exist an open neighbourhood U of z in X,
an open ball B around z in 5, a compact stratified space L, called the link of
z, and a homeomorphism ¢ : B x CL — U that preserves the decomposition,
i.e., maps pieces onto pieces.

2.7. REMARK. We say that a decomposed space X satisfies the condition of
the frontier if the closure of each piece is a union of connected components of
pieces of X. It follows easily from Definition 2.6 that stratified spaces satisfy
the condition of the frontier.

2.8. EXAMPLE. The decomposition (5) satisfies the frontier condition while
(4) does not. So decomposition (4) is not a stratification. We leave it to the
reader to check that decomposition (5) is a stratification.

2.9. EXAMPLE. A triangulated space is stratified by the interiors of its sim-
plexes. The proof is an elementary exercise in PL-topology.

We are now in a position to define a stratified symplectic space.

2.10. DEFINITION. A stratified symplectic space is a stratified space X to-
gether with a distinguished subalgebra C*°(X) (a smooth structure) of the
algebra of continuous functions on X such that:

(i) each stratum S is a symplectic manifold;
(ii) C*(X) is a Poisson algebra;
(iii) the embeddings S < X are Poisson.

Condition (iii) means that given two functions f,g € C°°(X) their restric-
tions, f|s and g|s, to a stratum S are smooth functions on S and their
Poisson bracket at the points of S coincides with the Poisson brackets of the
restrictions defined by the symplectic structure on S: {f,g}‘s ={fls,gls}s.

2.11. THEOREM (cf. [21]). Let (M,w) be a Hamiltonian G-space with mo-
ment map J : M — g* and suppose that the action of the Lie group G Is
proper. Then given an orbit O € g* the reduced space Mo := JHO)/G is
a stratified symplectic space.
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2.12. THEOREM (loc. cit.). Assume that the level set J~1(O) is connected.
Then the reduced space Mo has a unique open stratum. It is connected and
dense.

2.13. REMARK. We note two important cases when the level set is connected.
First, if M 1s a symplectic vector space and G acts linearly on M then the
zero level set is conical and so is connected. Secondly, F. Kirwan has proved
(11] that if the moment map J is proper (for example if M is compact) and
M is connected then the zero level set J~(0) is connected. It follows then
from the shifting trick, Proposition 2.16 below, that the level set J=1(O) is
connected for any compact orbit O.

The symplectic structure on the dense open stratum determines the Poisson
structure on the whole reduced space and, therefore, the symplectic structures
on all the lower-dimensional strata by condition (iii) of Definition 2.10. We
will refer to the dense open stratum as the top stratum. Condition (i) also
has some interesting consequences. Suppose that the top stratum is two-
dimensional as in Section 1. Then all the other strata are zero-dimensional,
i.e., they are isolated points. There is a temptation in view of Theorem 2.12
to discard all the lower-dimensional strata. We will see in the next section
that giving in to such a temptation leads to a loss of interesting information.

2.2 Hamiltonian Mechanics on a Stratified Symplectic Space

Just as we defined in Section 1.1 a diffeomorphism between two reduced
spaces, one can define an isomorphism between two stratified symplectic
spaces.

2.14. DEFINITION. Let X and Y be two stratified symplectic spaces. A map
¢ : X — Y is an isomorphism if ¢ is a homeomorphism and the pullback map
¢*: C®°(Y) - C=(X), f— fo¢is an isomorphism of Poisson algebras.

Note that we do not explicitly require that ¢ be strata-preserving. The reason
for this is that the stratification of a stratified symplectic space X is com-
pletely determined by the Poisson algebra structure on the space of smooth
functions on X, as we shall see shortly.

2.15. EXAMPLE (the ‘shifting trick’). Let M be a Hamiltonian G-space with
momentum map J : M — g* and let O be any coadjoint orbit of G. Consider
the symplectic manifold M x O~, the symplectic product of M with the
coadjoint orbit O, endowed with the opposite of the Kirillov symplectic form.
The diagonal action of G on M x O~ is Hamiltonian with momentum map Jo
given by Jo(m,v) = J(m)—v. It is easy to check that the cartesian projection
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II: M x O — M restricts to an equivariant bijection Jo(0) = J7HO). As
a result, II descends to a bijection between reduced spaces,

HZ(MX O_)O:)MO-

2.16. PROPOSITION. Assume that the orbit © is a closed subset of 9*. Then
the map Il is an isomorphism of stratified symplectic spaces.

See [5] for a proof.

2.17. DEFINITION. A flow {¢;} on a stratified symplectic space X is a one-
parameter family of isomorphisms ¢, : X — X, ¢ € R, such that ¢;,, = ¢,04,
for all ¢ and s.

2.18. DEFINITION. Let h be a smooth function on a stratified symplectic
space X, h € C*(X). A Hamiltonian flow of b is a flow {¢:} having the
property that for any function f € C*°(X)

d
=(fod) ={fh} o 4. (6)

This is Heisenberg’s form of Hamilton’s equations. Since the space X is
not necessarily a manifold, (6) cannot be reduced to a system of ordinary
differential equations. For this reason the existence and uniqueness of the
Hamiltonian flow is not immediately obvious. If X is a reduced space, the

Hamiltonian flow does indeed exist and is unique [21]. Moreover, the following
lemma holds.

2.19. LEMMA (cf. [21]). Let Mo be the reduced space of a Hamiltonian G-
space M at a coadjoint orbit O of G. The Hamiltonian flow of a smooth
function h € C*(Mo) preserves the stratification. The restriction of the flow
of h to a stratum S equals the Hamiltonian flow of the restriction hls.

The connected components of the strata are the symplectic leaves of M,
i.e., given any pair of points p, ¢ in a connected component of a stratum of
Mo, there exists a piecewise smooth path Joining p to q, consisting of a finite
number of Hamiltonian trajectories of smooth functions on Mo. Thus the
Poisson structure of C'*°(My) determines the stratification of Mo.

2.20. REMARK. It follows that a zero-dimensional stratum of the reduced
space Mo is automatically a fixed point of any Hamiltonian flow. Thus the

zero-dimensional strata of My determine relative equilibria in the original
space M.
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2.3 Orbit Types

We now explain where the stratification of a reduced space comes from and
how it can be computed. Let G be a Lie group acting properly on a manifold
M. (For example if G is compact then its action is automatically proper.)
For a subgroup H of G' denote by M(g) the set of all points whose stabilizer
is conjugate to H,

M@y ={m € M : Gy, is conjugate to H }.

By virtue of the slice theorem for proper actions (see e.g. Palais [17]), the set
Mgy is a smooth submanifold of M, called the manifold of orbit type (H).
Thus we have a decomposition M = [[y<c M) of M into a disjoint union
of manifolds. Theorem 2.11 can now be restated as follows.

2.21. THEOREM. Let (M,w) be a Hamiltonian G-space with moment map
J: M — g* and let O be a coadjoint orbit of G. Assume that the action of
G on J7'(O) is proper. Then the intersection of the preimage of the orbit
J~Y(O) with a manifold of the form My, H < G, is a manifold. The orbit

space

(Mo)my = (J7HO) N Mu))/G

is also a manifold. There exists a unique symplectic form wgy on (Mo)
such that the pullback of wigy by the orbit map J~'(O) N My — (Mo)
coincides with the restriction to J™'(O) N My of the symplectic form w.
Finally, the decomposition of Mo := J~Y(0)/G, the reduced space of M at
the orbit O, given by

Mo = [] (Mo)un)
H<G

is a symplectic stratification of Mgp.

It is a curious fact that each stratum (Mo )(sy may also obtained by a regular
Marsden-Weinstein reduction. To keep the discussion simple let us assume
that O is the zero orbit. (This is no loss of generality by virtue of the shifting
trick.) For a subgroup H of G define

Myg={meM:G, isexactly H}

It is well-known that My is a symplectic submanifold of M. The action
of G does not preserve the manifold My. However, the smaller group L =
Ng(H)/H does act on My, where Ng(H) denotes the normalizer of H in G.
Moreover, the action of L is Hamiltonian and the corresponding moment map
Jr, : My — I* is essentially the restriction of the moment map J : M — g*
to MH.

"
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2.22. THEOREM (cf. [21]). Zero is a regular value of the moment map Jy.
The Marsden- Weinstein reduced space (Jg)~*(0)/L is symplectically isomor-
phic to the stratum (M) ).

This theorem provides us with a simple recipe for lifting integral curves of a
reduced Hamiltonian flow on the reduced space My to the level set J=1(0).
Namely, let h be an invariant smooth function on the manifold M, and let h
be the smooth function on the reduced space induced by h. Let ®; and ®,,
denote the Hamiltonian flows of h and h, respectively. If () is an integral
curve of the function £, then it lies inside some stratum (Mo)(H), and the
classical recipe for lifting a reduced flow (see e.g. [1]) can be used to lift v(t)
to an integral curve of the Hamiltonian h, lying in the manifold M.

2.4 The Closure of a Coadjoint Orbit as a Stratified Symplec-
tic Space

The object of this section is to show that for a large class of Lie groups the
closure of every coadjoint orbit is a stratified symplectic space. In Section 4
we shall see that in some cases a reduced space of a Hamiltonian space can
be identified with the closure of a coadjoint orbit of a different group.

2.23. THEOREM. Let H be a reductive Lie group and let O C h* be a coad-
joint orbit of H. Then the closure O of O is a stratified symplectic space.
The strata are the H-orbits in O.

PROOF. We take the space C*°(O) of smooth functions on O to be the space
of Whitney smooth functions. Recall that a continuous map f : O — R is
called Whitney smooth if and only if there exists a function F' € C*(h*) such
that Fls = f.

It is easy to see that C°°(O) is naturally a Poisson algebra. Indeed, since
the coadjoint orbits are the symplectic leaves of the Poisson structure on h*,
for all F, G € C*=(*) and z € O the bracket {F,G}(z) depends only on the
restrictions of F' and G to the coadjoint orbit of 2, which is contained in @,
Thus the bracket {-,-}5 given by

{Flo,Glo}o(z) :={F,G}(z)
is well-defined. The partition of @ into coadjoint orbits is a decomposition.
The local finiteness follows from the assumption that H is reductive. The
proof of the fact that O is a stratified space requires some machinery.

2.24. DEFINITION. Let X be a subspace of R*. A decomposition of X is
called a Whitney stratification if the pieces of X are smooth submanifolds of
R™ and if for each pair of pieces P, with P < () the following condition of
Whitney holds:
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WHITNEY’S CONDITION B. Let p be an arbitrary point in P and let {pi}
and {¢;} be sequences in P, resp. @, both converging to p. Assume that
the lines /; joining p; and ¢; converge (in the projective space RP™1) to a
line I, and that the tangent planes T,,@Q converge (in the Grassmannian of
(dim @)-planes in R™) to a plane . Then [ is contained in 7.

It follows from Mather’s theory of control data (see [14]) that a Whitney
stratified subset of Euclidean space is a stratified space in the sense of our
Definition 2.6. An outline of the argument can be found in [8, page 40]. So
1t suffices to show that O is a Whitney stratified space.

Since H is reductive, the coadjoint representation Ad* : H — GI(H*) is
algebraic, i.e., the image Ad*(H) is an algebraic subgroup of GI(h*) and the
coadjoint action of Ad*(H) on b* is algebraic (see e.g. [23] for a proof). Now
a coadjoint orbit Ad*(H)-q, q € b*, is semialgebraic by the Seidenberg-Tarski
theorem, since it is the image of Ad"(H) under the algebraic map ‘evaluation
at ¢’, which sends a € Ad*(H) to a-¢. Let @ and @, be two orbits in
O with Oy contained in the closure of @,. The two orbits are smooth and
semialgebraic. Therefore a theorem of Wall [24, p. 337] applies. In this case
the theorem says that Whitney’s condition B for the pair (O, @) holds at
all points of O; except possibly for the points in a semialgebraic subvariety
of dimension strictly less than the dimension of @;. In particular condition
B holds at some point of @;. But the pair (01, 0;) is H-homogeneous, so
condition B holds everywhere. This proves that @ is a Whitney stratified
space. 0

3 Reduction of Cotangent Bundles

3.1 The Cotangent Bundle of a Quotient Variety

We have seen in Section 1 that the singular reduced space (T*R?)p is a sym-
plectic orbifold. There are a few other interesting examples of singular re-
duced spaces coming from reduction of cotangent bundles which turn out
to be orbifolds. In order to understand what makes these examples work
it will be helpful to consider lifted actions on cotangent bundles in general.
(We caution the reader that not every reduced space is an orbifold; see [5]
for a counterexample.) Let G be a Lie group acting smoothly and properly
on a smooth manifold X. Let # be a point in X and H the stabilizer of =
in G. Since the action is proper H is compact. Therefore there exists an
H-equivariant splitting of the tangent space to X at z:

T,X =T,(G 2)®V
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where V is some subspace of the tangent space. Let B be a small H-invariant
ball in V centered at the origin. The slice theorem asserts that a neighbour-
hood of the orbit G-z in X is G-equivariantly diffeomorphic to the associated
bundle G xy B.

If the action of GG is free, it follows from the slice theorem that X is a
principal G-bundle over the orbit space Q = X/G. Lift the action of G to
an action on the cotangent bundle. It is well-known (see e.g. [1]) that in this
case the reduced space at the zero level is simply the cotangent bundle of the
base, (T*X)g = T*Q. This result has been recently generalized by Emmrich
and Roémer [6] to the case when the action of G on X is of constant orbit
type, that is, there exists a subgroup H of G such that for any z € X the
orbit G - z is diffeomorphic to the homogeneous space G/H. Alternatively,
by virtue of the slice theorem, the action of G on X is of constant orbit type
if and only if X is a fibre bundle over the orbit space @ = X/G with typical
fibre G/H. Emmrich and Rémer showed that in this case the reduced space
(T*X)o 1s again T™Q, the cotangent bundle of the orbit space.

Let us now consider the general case of an action of G on X, that is, we
make no assumption concerning the structure of the orbits. Lift the action
of G to an action on the cotangent bundle 7*X and let J : 7*X — g* be the
corresponding moment map. Recall that for (z,7) € TFX the value of J is

defined by
(fa‘](ma"]» = _<§X(w))"7>a (7)

where (-,-) on the left hand side of the equation denotes the pairing between
the Lie algebra g and its dual, and on the right hand side the pairing between
the tangent and the cotangent spaces of X at z, while {x(z) is the vector
obtained by evaluating at z the vector field defined by the infinitesimal action

£ on X. Let us compute the zero level set of the moment map. It follows
from (7) that

JHO)NT;X = {n: (éx(z),n) =0forallé € g}.
We have proved:

3.1. LEMMA. Let J : T*X — g* be the moment map induced by the lift of
the action G on X to an action on T*X. Then the intersection of the zero
level set of the moment map with the fibre of the cotangent space at a point
z € X is (T.(G-z))°, the annihilator of the tangent space to the orbit through

z. Consequently,
H (7o(G - 2))°.
zeX

J7H0) = (8)
3.2. REMARK. It follows from the description (8) of the zero level set that it

retracts onto X. In particular, if X is connected then the level set J~(0) is
connected as well.
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For a point z in X we call the orbit space (T,,(G - ))°/G, the cotangent cone
of X/G at the point G-z € X/G. It is easy to see that this definition does
not depend on the choice of the point x € G -z, i.e., if 2’ = a - z for some
a € @, then multiplication by @ induces an isomorphism between the orbit

spaces (T,(G - 2))°/G, and (T,/(G - 2'))°/Gy. Moreover, the quotient

7©/6 = (L 16 2)r) /G

reX
is set-theoretically the disjoint union of all cotangent cones to X/G. Therefore
the following definition makes sense.

3.3. DEFINITION. The cotangent bundle of an orbit space X/G is the strat-
ified symplectic space T*(X/G) := J~1(0)/G.

3.4. EXAMPLE. Suppose that G is finite.
J7H0)/G = T*(X)/G.

Then J = 0, so T*(X/G) :=

3.5. REMARK. The cotangent bundle 7%(X/G) is not a locally trivial bundle
over the base variety X/G, since the fibres may vary from point to point. Nor
is the projection T*(X/G) — X/@G a stratification-preserving map.

3.6. EXAMPLE. Let X = R? and let G = SO(2) act on X in the standard
way. Then the quotient X/G is a closed half-line [0,00). It consists of two
strata: the end-point {0} and the open half-line (0,00). We saw in Section 1
that the cotangent bundle T*(X/G) of the half-line is a cone. The fibre
7~ !(z) of the projection 7 : T*(X/G) — X/G is a line if z € (0,0), but
it is a closed half-line if = 0. So T*(X/G) is not a locally trivial bundle
over X/G. Notice that #71(0) intersects the top stratum of T*(X/G). So the
preimage of the stratum {0} is not a union of strata.

It seems unlikely to us that the smooth structure of a cotangent bundle
T*(X/G) depends on the way in which the orbit space X/G is written as
a quotient. More precisely, we make the following

3.7. CONIECTURE. Let G and H be Lie groups and let X, resp. Y, be smooth
manifolds on which G, resp. H act properly. Assume that the orbit spaces
X/G and Y/H are diffeomorphic in the sense that there exists a homeomor-
phism ¢ : X/G — Y/H such that the pullback map ¢* is an isomorphism
from C®(Y/H) := C®(Y)¥ to C*(X/G) := C=(X)®. Then the cotangent
bundles of X/G and Y/ H are isomorphic in the sense of Definition 2.14.

In his unpublished thesis [19], Schwarz showed that modulo some assumptions
T*(X/G) and T*(Y/H) are homeomorphic if X/G and Y/H are diffeomor-
phic. In the next sections we prove a version of this result and provide some
experimental evidence for Conjecture 3.7.
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3.2 Cross-sections

Let X be a smooth manifold and G a Lie group acting on X. Often one
can compute the cotangent bundle of the quotient variety X/G by means of
a cross-section of the G-action, i.e., a pair (Y, H), where Y is an embedded
submanifold of X and H a Lie group acting on Y such that every G-orbit
in X intersects Y in exactly one H-orbit. If (Y, H) is a cross-section, it is
easy to see that the natural map Y/H — X/G is a homeomorphism. On
an additional assumption we show now that the cotangent bundles 7#(X/G)
and T*(Y/ H) are also homeomorphic.

3.8. PROPOSITION. Let X be a Riemannian G-manifold. Assume that (Y, H)
is a cross-section of the G-action on X. Assume further that the cross-section
is orthogonal in the sense that for all y in Y

T,(G-y) = (LYY n(T,G-v)) & (LY NT,(G - y)). )
Then the inclusion Y C X induces a homeomorphism (T*Y ) = (T*X)o.
3.9. REMARK. Suppose the cross-section Y is the set of fixed points for some
subgroup K of G. Let H be the ‘Weyl group’ N(K)/K. The statement (9)
regarding the orthogonality of the intersections of the G-orbits with ¥ holds

automatically in this case. This follows easily from the proof of the slice
theorem.

PRrROOF. The metric allows us to identify equivariantly tangent and cotangent
bundles of X and of Y, giving rise to a symplectic embedding

Y ~TY - TX ~T"X.

Let Jx : TX — g* and Jy : TY — b* denote the moment maps. Let y be a
point in Y. Since the orbit G - y intersects Y in a single H-orbit, (9) implies
that

Ty(G-y) = (1Y) N (T, G- y)) & (Ty(H - y))

is an orthogonal decomposition. Hence (T,(G - y))* = Vi @ V4, where V5 =
(TyH-y)* NT,Y and V, = (T, G- y)* 0 (T, Y)*4, so that

J)_(l(O) ﬂT;X =Vel,
and

JFO)NTY = W.

This gives us an inclusion Ji'(0) — J5'(0). Composing with the orbit map
J31(0) — Jx'(0)/G = (T*X), gives us a map from Jy'(0) to (T*X),. We
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claim that this map descends to a map from J3*(0)/H to (T*X)o. Indeed,
suppose (y',7') and (y,7n) are two points in J;'(0) and a - (y',n’) = (y,n) for
some a € H. By assumption G-yNY = H -y, so thereis b € G with b-y' = y.
1t is therefore no loss of generality to assume that y = y’. In this case 7 and
' both lie in V; and a € H,. Locally near y the space Y is H-equivariantly
diffeomorphic to the associated bundle H xp, V4, so locally

Y/H ~ (H xg, 1)/H = Vi/H,.
Here H, denotes the stabilizer of y in H. Similarly,

X/G ~ (G xq, V1@ V2))/G = (1 ®W)/G,,

where G, denotes the stabilizer of y in G. We have assumed that (Y, H) is
a cross-section for the G-action, and therefore X/G ~ Y/H. It follows that
n,n" € Vi lie in the same H,-orbit if and only if ,7 € V = V4 @ V; lie in
the same G, orbit. We conclude that there is ¢ € G with ¢ (y,7) = (¥',7'),
thereby proving the existence of a continuous map

@: (T*Y)o = J7*(0)/H = (T*X)o.

1

A similar argument shows that ¢ is bijective and that ¢~ is continuous.

O

3.10. REMARK. This proof shows that each G-orbit in J%'(0) intersects
J71(0) in a single H-orbit, in other words, that the pair (J;'(0), H) is a
cross-section of the G-action on Jx'(0).

3.3 Row, Row, Row your Boat

Let X be the unit two-sphere in R?® and let G be the circle acting on X
by rotations on the z-axis. The space X is the configuration space of the
spherical pendulum and G is its group of symmetries. Now let Y be a great
circle through the poles and let H be the group Z, acting on Y by reflection
in the z-axis. Then the pair (Y, H) is obviously an orthogonal cross-section
of the G-action on X. Let Jy be the momentum map of the lifted action
of G on T*X. The lifted action of H on 7™Y has trivial momentum map,
since H is finite. By Proposition 3.8, the pair (T*Y, H) is a cross-section for
the G-action on Jx'(0). The physical meaning of this fact is that a spherical
pendulum with zero angular momentum is just a planar pendulum.

Let us describe the orbifold (T*Y)/H in some detail. We identify the
meridian Y with S* = {¢" : § € R} in such a manner that the south pole
is mapped to 1 € S*. We cover (I*Y)/H = (S* x R)/Z, with two orbifold
charts. The domain of both charts is the strip D = (—m,7) x R C R?
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equipped with the Z,-action generated by reflection in the origin. The chart
maps ¥y and v, are given by:

1D — (S x R)/Z,, (4,r)+ [em,r],
$2: D — (8T X R)/Zy, (8,7) [, 7],

where [z,y] denotes the equivalence class of (z,y) € S? x R. It is easy to
write down the transition map from one chart to the other. The resulting
space has the shape of a ‘canoe’ with two isolated conical singularities, We
encourage the reader to construct this orbifold with paper and glue.

We claim that the natural homeomorphism

$: (T*Y)/H = T*(Y/H) - T*(X/G) (10)

is an isomorphism of reduced spaces. It obviously suffices to show that ¢ :
O; — ¢(0;) is an isomorphism, where O; = $i(D) for ¢ = 1, 2. Note that
¢(:(D)) is the space obtained by reducing T*(X — {+}) at zero, where {*}
is either the south or the north pole of the sphere X, depending on whether
i=1or2. But X — {+}is G-equivariantly diffeomorphic to the plane R?, if
we let G = SO(2) act on R? in the standard fashion. So the maps ¢ : 0; —
#(0;) are, up to changes of coordinates, equal to the map R?*/Z, — (T*R2),
exhibited in Section 1, which is an isomorphism. Therefore, the map (10) is
also an isomorphism.

The two isolated singularities of the ‘cance’ are relative equilibria of the
spherical pendulum. Both are actually absolute equilibria, corresponding to
the pendulum pointing straight up or down. For an alternative computation
of the ‘canoe’ using invariant polynomials, see [3].

3.4 Reduction of the Cotangent Bundle of a Symmetric Space

Consider the special orthogonal group S0(n) acting by conjugation on S*(R™)
the space of real symmetric n x n-matrices. Let S, denote the symmetric
group on 7 letters acting on R"™ by permuting the coordinates and hence
on T*R"™ by permuting the coordinates in pairs. Note that R™ embeds
into S*(R") as the set of diagonal matrices. Since any symmetric matrix
is diagonalizable, the pair (R",S,) is a cross-section of the S50(n)-action on
S*(R"). Therefore S*(R™)/SO(n) is homeomorphic to R"/S,. The vector
space S*(R") has a natural SO(n)-invariant inner product:

((aij), (bu)) = trace((ai;)(by)) = > aijbij.

Remark 3.9 implies that the cross-section (R™,S,) is orthogonal. There-
fore Proposition 3.8 provides us with a homeomorphism ¢ : (T*R™), —
(T*S*(R™))o. We contend that ¢ is an isomorphism of reduced spaces. Since
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the group S, is finite, the zero level set of the S,-moment map is the whole
space R™ X R™, which embeds naturally into 7*S*(R") ~ S?(R") x S?(R").
In fact R® x R™ is a subset of the zero level set of the SO(n)-moment
map J : T*S*(R") — so(n)*. Clearly any SO(n)-invariant function on
T*S*(R™) restricts to an Sp-invariant function on R™ x R"™. This implies
that ¢*C((T*S*(R™))o) is contained in C®((T*R")o) = C®(R™ x R™)%.
To show that ¢ is an isomorphism of reduced spaces we need to prove that
¢*C=(T*S*(R")) is equal to C°((T*R")y). By the same argument as the
one we have used in the example of Section 1, it is enough to show that
there is a set {;;} of polynomials that generates the S,-invariant polynomi-
als on R™ x R™ and has the property that each oy; is the restriction of an
SO(n)-invariant polynomial on S*(R") x S*(R"). According to Weyl [25],
the polynomials

orlz,y) = foy}, 1<k, 1<, (11)

iy

generate the S,-invariant polynomials on R™ x R™ On the other hand, oy
is the restriction of the SO(n)-invariant polynomial 7y(A, B) = trace(A*B'),
so the polynomials (11) are the required set. We have thus proved that

(T*S*(R™))o = (R™ x R")/S,,

as stratified symplectic spaces.

More generally, let G be a semisimple Lie group over R, K a maximal
compact subgroup of G and g = €@ p a Cartan decomposition of g = Lie(G).
Then K acts on p by conjugation. Pick a maximal abelian subspace a of p
and let W = N(a)/C(a) denote the Weyl group. It is well-known that the
restriction map R[p] — R[a] from polynomials on p to polynomials on a gives
rise to an isomorphism R[p]% — R[a]". The quotient spaces a/W (the Weyl
chamber) and p/ K are therefore isomorphic. The computation above verifies
Conjecture 3.7 in the special case G = Sl(n,R), showing that we have an
isomorphism of cotangent bundles, (T*a)/W = T*(a/W) = T*(p/K). For
arbitrary G, Conjecture 3.7 would follow from (but is not equivalent to):

3.11. CONJECTURE. The restriction map R[p x p]¥ — RJa x a]V is surjec-
tive.

4 Poisson Embeddings of Reduced Spaces

The goal of this section is to show that in some cases a reduced space of a
symplectic representation space can be realized as the closure of a coadjoint
orbit in the dual of some Lie algebra (cf. Section 2.4). For the remainder
of this section, let K be a compact group acting linearly on a symplectic
vector space V and preserving its symplectic form w. Then the action of K is




Hamiltonian. Let J : V — & denotes the corresponding moment map. The
ring of invariant polynomials R[V]¥ is finitely generated. We now make the
following assumption:

AsSUMPTION Q. The ring of all K-invariant polynomials on V is generated
by the homogeneous quadratic K-invariant polynomials.

The space of homogeneous quadratic polynomials, R, [V], and the space of
invariant polynomials are both closed under the Poisson bracket. It follows
that their intersection,

b = Rz [V]K,

which is the space of invariant homogeneous quadratic polynomials, is also
closed under the Poisson bracket. The algebra Ry[V] is canonically isomor-
phic to the Lie algebra sp(V) of all infinitesimally symplectic linear trans-
formations: the isomorphism takes a quadratic polynomial to its associated
Hamiltonian vector field. The inverse map sends ¢ € sp(V,w) to the polyno-
mial 1/2w(£v,v). Thus we can view § as a subalgebra of sp(V).

Consider the map o : V — h* defined by

{o(v), P) = P(v)

where P € b and (:,-) denotes the canonical pairing of a vector space with
its dual. This is the Hilbert map of classical invariant theory. It is manifestly
K-invariant, and so induces a map & : V/K — b*. Assumption Q above
implies that o separates K-orbits. Thus & is a homeomorphism onto its
image o(V) C b*. Let H be the connected subgroup of Sp(V) whose Lie
algebra is h. Note that the map ¢ is the momentum map for the H action
on V. It is H-equivariant. (Here H acts on h* by the coadjoint action.)

4.1. REMARK. It is perhaps helpful to rephrase the above discussion in co-
ordinates. Let ay,...,0n be a basis for the space § of invariant homogeneous
quadratic polynomials. The Poisson bracket of any two generators is again
a homogeneous quadratic K-invariant polynomial (or zero), which demon-

strates that h) is a Lie algebra. This Lie algebra has structure constants
cfj € R defined by

k
{0'1', O’j} = Z Cijak-
k
The map o, in terms of this choice of coordinates on h* is

c:V — RN, V= (Ul(v);"'aUN(v))’

where we have identified R" with §*, the isomorphism being the one associ-
ated to choosing the basis of h* which is dual to the basis o;.
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4.2. REMARK. Motivated by problems in representation theory, Howe [9]
defined a reductive dual pair to be a pair of reductive subgroups of Sp(V') that
are each other’s centralizers. The groups K and H above clearly commute
with each other and it is easy to see that H is (the identity component of)
the centralizer of K. It is not true in general that K is the centralizer of H,
as the example of K = SU(2) acting on V = C? clearly indicates. One can
get around the problem of K not being the full centralizer of H in Sp(V) by
replacing it with K := the centralizer of H in Sp(V). However, it is not at all
clear why K’ and H should be reductive. Also, given a dual pair (K, H) with
K compact, it is not clear whether the quadratic polynomials corresponding
to h = Lie(H) generate R[V]X.

However, in three interesting physical examples of symplectic representa-
tions of K satisfying condition Q, the groups K and H do form a reductive
dual pair:

1. the planar N-body problem (SO(2) acting diagonally on (T*RYHNY;

2. the d-dimensional N-body problem (O(d) acting diagonally on
(T*R4)N), this example is worked out in the next section;

3. U(p) acting on CP @ C¥.

These examples seem to hint at an interesting connection between reductive
dual pairs and condition Q.

Now let O be a coadjoint orbit of K. Consider the corresponding reduced
space Vo = J7H(O)/K. We claim that the map & : Vo — h* induced by the
H-momentum map ¢ is a Poisson embedding in the following sense.

4.3. DEFINITION. Let X be a stratified symplectic space and let P be a
Poisson manifold. A proper Poisson embedding of X into P is a proper
injective map 5 : X — P such that

i. the pullback by j of every smooth function on P is a smooth function
on X;
ii. the pullback map j* : C*(P) — C*°(X) is surjective;
iii. the pullback map j* is a morphism of Poisson algebras.

We mention a few obvious consequences of this definition: the image of a
proper Poisson embedding j : X — P is closed; j is a homeomorphism onto
its image; the kernel of j*, which is the set of smooth functions vanishing
on the image j(X), is a Poisson ideal inside C°(P); and the set of Whitney
smooth functions on j(X) is a Poisson algebra, which is isomorphic to C*(X).
Therefore j(X) is a stratified symplectic space (stratified by the images of
the strata in X) and j : X — j(X) is an isomorphism of stratified symplectic
spaces.
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4.4. THEOREM. Suppose that assumption @Q holds. Let H be the closed con-
nected Lie subgroup of Sp(V') described above, and o : V — h* its associated
momentum map. Let O be an arbitrary coadjoint orbit of K. Then the
following statements hold.

1. The map & : Vo — b* is a proper Poisson embedding of the K -reduced
space Vo (where the bracket on h* is the usual Lie-Poisson bracket);

2. Each connected component of a symplectic stratum of Vo is mapped
symplectomorphically by & onto a coadjoint orbit of H contained in
7(Vo);

3. The image ¢(Vo) of the Poisson embedding is the closure of a single
coadjoint orbit of H.

PROOF. 1. We check the conditions of Definition 4.3. The square of the
distance to the origin in V is a K-invariant polynomial function. From this it
follows easily that the Hilbert map o is proper. Hence the map & : Vp — §*
is proper. It is injective because the Hilbert map separates the K-orbits.
It is not hard to see from the definition of smooth functions on Vp that &
pulls back smooth functions to smooth functions. That the pullback map
a* . C®(bh*) — C>°(Vo) is surjective is an easy consequence of Schwarz’s
theorem [20]. It is a homomorphism of Poisson algebras, because the Hilbert
map o, being the H-momentum map, is a Poisson map.

2. The connected components of the symplectic strata are the symplectic
leaves of the reduced space Vo, i.e., they are swept out by the Hamiltonian
flows of smooth functions (see Lemma 2.19). Since the Poisson algebras
C®(Vo) and C*(j(Vo)) are isomorphic, the embedding j maps leaves onto
leaves. But the leaves of h* are simply the coadjoint H-orbits. (Here we use
that H is connected.)

3. Theorem 4.6 below states that the level set J=1(O) is connected. It follows
now from Theorem 2.12 that the reduced space Vp has a connected open dense
stratum Sj,p; so the set (Vo) has to be the closure of 7(Stop), which is a single
coadjoint orbit by statement 2 of this theorem.

a

4.5. REMARK. Denote the stratified symplectic space (Vo) by Xo. If the
group H is semisimple then we use a Killing form to identify b with b* in an
H-equivariant way. If O is the zero orbit, then the image Xy = o(J=1(0))
described in Theorem 4.4 is neccessarily the closure of a nilpotent orbit. This
is because J(0) = 0 and ¢(0) = 0 so that 0 € o(J=}(0)). And the only orbits
whose closure contains 0 are the nilpotent ones.

More generally Xo contains a single semisimple orbit orbit @ and any
other orbit P contained in X, fibres over Q. The fibration 7p : P — Q is
simply the projection of n € P onto its semisimple part, 7p(7) = 7,,. The
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fibre of 7p is the orbit of the nilpotent part 7, of n under the action of the
stabilizer group H,,, of 1,,. Note that 1, is nilpotent in Lie(H,,,). It follows
that one can view the map 7 : Xo — @ as a fibre bundle with typical fibre
being the closure of a nilpotent orbit in some smaller reductive group. These
facts about the structure of orbits of a semisimple group are well-known and
we refer the reader to [23] for proofs and further references. It was shown
in [12] that if a (co)adjoint orbit P fibres over an semisimple orbit () then
the fibration is symplectic. Thus the map 7 : Xp — @ can be viewed as a
fibration of stratified symplectic spaces.

To conclude this section, we prove the connectivity statement used in the
proof of Theorem 4.4. This result does not use assumption Q.

4.6. THEOREM. Let K be a compact group acting linearly on a symplectic
vector space V and preserving its symplectic form w. Let J : V — ¥ denotes
the corresponding moment map. Then for any coadjoint orbit O of K the set
J71(O) is connected.

PROOF. Without loss of generality we may assume that V is C™ with the
standard symplectic form and K is a subgroup of the unitary group U(n).
Let O be a coadjoint orbit of K. We will show that for any r > 0 the closed
ball

B(ry={zeC": |z <r}

intersects J~*(O) in a connected set. Clearly this will prove the theorem.
Note first that the central circle subgroup of U(n),

UQl) = % :0eR
it
commutes with K and therefore preserves the level set J=*(O). Consider now
the space N(r) obtained from B(r) by identifying the points on the boundary
that lie in the same U(1)-orbit. Let ¢ : B(r) — N(r) denote the quotient
map. Since J7}(O) is U(1)-invariant and the fibres of ¢ are connected, the
set J~1(O)N B(r) is connected if and only if its image under ¢ is connected in
N(r). We will see shortly that N(r) is K-equivariantly symplectomorphic to
CP™(r), the complex projective space with the symplectic form equal to the
standard one times r. We will also see that under this identification the action
of i on N(r) becomes Hamiltonian with the moment map J, : N(r) — €
having the property that J1(O) = ¢(J~1(O) N B(r)).
Consider the action of U(1) on C" x C corresponding to the Hamiltonian
¢(z,w) = |z|* + |w|* — r for (2,w) € C" x C. Then
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$7H0) = {(z,w) €EC" x C: |2]* + jw|* =7}
and ¢71(0)/U(1) ~ CP™(r). Now, K acts on C" x C by acting trivally on
the second factor. Since the actions of K and U(1) on C™ x C commute, the
action of K descends to a Hamiltonian action on the reduced space CP"(r).
The corresponding moment map J, is obtained by extending J : C* — ¥ by
zero to a map on C" X C, restricting the extension to the sphere ¢=1(0) and
pushing it down to a map on the quotient CP™(r).

_ To get the identification of N(r) with CP™(r) we start out by embedding
B(r) into ¢~1(0) via the map

fize (z,\/r — |z|2)
Composing f with the orbit map ¢~ — ¢~1/U(1) we get a map f’ from B(r)
onto CP™(r). It is easy to see that f’ descends to a homeomorphism f” from
N(r) to CP™(r). It is also easy to see that
F(g(IH(O)N B(r))) = f'(a(J7H(O) N B(r))) = J7H(0).

vaiously, the moment map J, : CP*(r) — ¥ is proper. So Remark 2.13
implies that the set J'(O) is connected and we are done. O

5 Reduced Space at Angular Momentum Zero for n Par-
ticles in d-space
Let V be the phase space for n particles in d-dimensional Euclidean space;
V = T'R*xT*R¢x ...T*R? (n times)
= R¢ x R? x ...R? (2n times).

Take G = O(d) to be the orthogonal group associated to R?, with ¢ € G
acting on V according to

1 2
9-(q1,9°,92,0% -+, ¢n,0") = (91, 99", 992, 9P°, - - - , G, gP").

We. will use Greek indices, y, v, etc. for the particle labels, and Latin indices
¢, j ete. to in.dex the coordinates on the Euclidean space RY. So V has
coordinates (g, p;), for p,v =1,2,...,nand 7,5 = 1, 2,..., d, which shows
that

M = R‘@R™. (12)
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Under this isomorphism the G-action becomes g(z ® z) = gz ® z. The
symplectic form on V is = i .dq, A dp¥. The momentum map for the
O(d)-action is

J(g,p) = Bugu A",
where we have used the inner product on R? to identify A’R? with the Lie
algebra of O(d) and its dual space. Equation (12) expresses V' as the tensor
product of the inner product space R¢ with the symplectic vector space R*".
Since h € H := Sp(n,R) acts by h(z ®@z) = 2®hz, it is clear that the actions
of G = O(d) and of H commute. The momentum map for the Sp(n, R)-action
is given by

%t @GP
o= ( 8% 8T, 03)
Here ‘- denotes the inner product on R?: ¢, - ¢, = Ziqlq,. Thus S = o(q,p)
is a symmetric 2n x 2n-matrix which we have written in terms of four n X n-
blocks.

In saying that ¢ is the momentum map we are identifying the space
$?(R?") of symmetric 2n X 2n-matrices on R*" with the dual of the Lie algebra
of sp(n, R) since the target of the map o is S*(R**). What is the identification
S2(R?") = sp(n, R)*? The trace pairing (Killing form) (Sy, S2) > trace 5152
induces an isomorphism sp(n, R) = sp(n, R)*. The identification of S*(R*")
with sp(n,R) is described by mapping S to JS where J is the symplectic
operator: J2 = —1, JJt = [, (v, w) = (v, Jw). Composing these identifica-
tions yields the desired one: sp(n,R)* = S?(R**). Under this isomorphism
the coadjoint action of Sp(n,R) intertwines with the action S — gSgt of
Sp(n,R) on S*(R™).

The “first main theorem of invariant theory’ (see e.g. [25, Theorem 2.9A])
states that the entries of S = a(q,p) in the formula for o form a basis for the
O(d)-invariant polynomials on V. Consequently assumption Q of the previous
section holds and so the restriction of & to J~1(0)/O(d) is an isomorphism
onto its image. (As in the previous section, & : M/O(d) — S*(R’n) is the
map induced by ¢.) What is its image?

Let © C S?(R?n) denote the set of nonnegative symmetric matrices whose
kernel is coisotropic. (This means that the kernel contains its (-orthogonal
complement.) Let X C ¥ denote the subset of ¥ consisting of matrices of
rank k, and let

5 = Uik Bk (14)

denote the subset of matrices with rank at most k. As a subset of sp(n,R)
the set ¥; is a single coadjoint orbit, and $¥ = ¥4 is the union of & + 1
nilpotent orbits, these being the ¥;, j < k, with Yo = {0}. These are the
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strata of ©*. We will show that o(J71(0)) = %* where k = min(d,n). Once
this is shown we will have proven:

5.1. THEOREM. Let V; denote the reduced space at angular momentum/|0
for the action of O(d) on the phase space V of of n particles in d-space.
Then V, is isomorphic as a stratified symplectic space to the set ©F described
in (14), where k = min(d,n). The isomorphism is the one induced by the
Sp(n, R)-momentum map, namely the restriction of & to J=1(0)/0(d).

PROOF. We proved in the previous section that o induces an isomorphism
with all the desired properties. It remains to prove that the image of o
restricted to J71(0) is X*. We have

rfh \
q2
o(q,p) = ;’i

p2

v
From this expression, it is clear that o (g, p) is nonnegative. Since each of the

two factors of (g, p) is a matrix with rank less than or equal to d, the matrix
o{(gq,p) has rank less than or equal to d.

t t
(0 g2t -ovqa P p* . p™).

5.2. REMARK. These are the only constraints on the image of . This is the
content of the the ‘second main theorem of invariant theory’ for the orthogonal
group [25, Theorem 2.17A]. However, we do not need this result to prove our
theorem, as it will in our case follow from equivariance.

Now let us restrict o to J=1(0). There we have ¢; Ap' + g Ap* +...qu Ap™ =
0. Let us assume for simplicity that the ¢' are linearly independent. Then
Cartan’s lemma (see e.g. [22, p. 19]) states that we have p* = £.5*q, for

some symmetric n X n matrix S. A direct calculation now shows that in this
case

M MS > (15)

U(Q,P): ( SM SMS

where M, , = g, - ¢, is the matrix of inner products. Note that

o(g,p) < _5} ) =0,
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from which it follows that the kernel of the map o(g,p) contains the La-
grangian subspace {(Sy,—y) : y € R*}. But any subspace containing a
Lagrangian one is coisotropic, so we have proved our result in this particular
case.

In general the ¢* are not linearly independent. But a slight variant of the
proof of Cartan’s lemma shows us that the dimension of the space spanned
by {q1,92,---,p",p%...,p"} 1s less than or equal to n. It follows from the
factorization of o that the rank of o (g, p) is always less than or equal to n. We
have proved the statement regarding the rank of the matrices in o(J~(0)).

A few moments’ reflection should convince the reader that each ¥; is a
single orbit of the Sp(n,R)-action on S?(R?n). Hint: Write R = L, @ L,
where the L; are Lagrangian subspaces and A € X; annihilates L,. Note
that Sp(n,R) acts transitively on pairs (Ly,L;) of transverse Lagrangian
subspaces, and that, relative to this splitting ¢ ® ¢* € Sp(n,R) for any g €
GI(L;). (The symplectic form allows us to identify L, with the dual of L,.)
Now suppose that we can show that there is some matrix A € £xNo(J~1(0)).
Then it follows from the Sp-equivariance of o and the Sp-invariance of J that
Sk C o(J7H0)). It is also clear that the closure of ¥y is ©*. The map
o, being homogeneous and quadratic, is a closed map. It now follows from
Yp C a(J7Y(0)) that o(J71(0) = ZF as desired. Thus all we have to do is
produce a single matrix A in Xy which we can be written in the form o(g, p)
for some (gq,p) € J71(0). Take (¢,p) = (¢,0). If d > n, set ¢ = (e, €2,...€,),
the first n elements of an orthonormal basis {(eq,eg,...,eq} for R%. Then

(see (15))
U(q,p)=<é g)

where I is the n X n identity matrix. This proves the theorem for the case
d > n. In case d < n, take ¢ = (e1,€2,...,€4,0,...,0). Then o(q,p) again
has the above form, except now I is the d x d-identity matrix. a

5.3. REMARK. The dual pair just discussed, (O(d), Sp(n,R)), is the subject
of [2]. See also [9] and [10, pp. 501-507].

5.4. REMARK (O(d) versus SO(d)). Suppose, in the above discussion, that
we replace O(d) by the special orthogonal group SO(d). Then the correspond-
ing reduced space will be a branched double cover over the O(d)-reduced
space. This is because O(d)/SO(d) is the two-element group. Assumption
Q fails for the group SO(d). Thus we cannot use dual pairs alone to con-
struct its reduced space. The additional, nonquadratic invariants are the d-ple
products det[vy, . ..,v4], where the v; are any of the vectors ¢1,...,p". They
satisfy the relation det[vy,...,v4]* = det[v; - v;]. In the special case d = 2,
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the d-ple product is quadratic and we can realize the reduced space via dual
pairs. Let us consider the case of our example in Section 1: d = 2,m =1,
The invariants were written down in Section 1.3 as (01,02, 03,04). o3 is the
2-ple product, i.e., the signed area. The other invariants are O(2)-invariants.
There is one relation, equation (3). It is quadratic in o3, explicitly showing
how the SO(2)-reduced space is a branched double cover of the O(2)-reduced
space.
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